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Part I: Introduction 

 Until the 1800s, scientists have thought of the electric and magnetic forces as 

being two separate ones. In reality, they are two sides of the same coin, connected and 

transformed into one another through Lorentz transformations (a change in reference 

frame). In this article, we explore how the magnetic force can be derived from the 

electric force through a relativistic setup. 

 

Part II: The Setup 

 We consider two (infinite) lines of charge with linear density +𝜆. Put a charge 

+𝑞 at a distance 𝑑 from the line. 

 

 

 

 

Fig. 1: A diagram showing the described setup 

 In the laboratory’s frame, only the charge is moving. We wish to calculate the 

force acted on the charge, which scientists at that time knew must be purely electric, 

since no magnetic effects are observed. 

 By symmetry, the electric field must point radially away from the wire. We 

consider a cylinder aligned with the wire, with radius 𝑑 and length ℓ → ∞. By Gauss’s 

law, 

(𝐸)(2𝜋𝑑ℓ) =
𝜆ℓ

𝜀0
 

𝐸 =
𝜆

2𝜋𝜀0𝑑
 

∴ 𝐄 =
𝜆

2𝜋𝜀0𝑑
𝐫̂ 

where 𝐫̂ is the radial unit vector that points directly away from the wire. Hence, the force 

is 

𝐅 = 𝑞𝐄 =
𝑞𝜆

2𝜋𝜀0𝑑
𝐫̂ 

 

Part III: Enter Special Relativity 

 Now, we consider a more interesting approach – we consider the setup in a 

frame moving with a velocity 𝑣 to the left. In this frame, both the point and line of charge 

+𝜆 

𝑑 

+𝑞 



move with a velocity 𝑣 to the right. In addition to the electric force, there is now also a 

magnetic force acting on the particle. 

Even though we supposedly don’t know how to calculate the magnetic force, we know 

what the total force should be – we calculated it just now, its just off by a relativistic 

factor. Under Lorentz boosts, forces perpendicular to the boost direction transform like 

𝐅′ =
𝐅

𝛾
 

where 𝐅′ is the force in the boosted frame. As such, in this frame, the total force should 

be 

𝐅 =
𝑞𝜆

2𝜋𝛾𝜀0𝑑
𝐫̂ 

which is the sum of the electric and magnetic forces acting on the particle. We know how 

to calculate the electric force, it’s just like in Part II. But it’s a little different, due to length 

contraction. Consider infinitesimal point charges separated by a uniform infinitesimal 

distance along the line. That infinitesimal distance gets contracted, forcing those 

unchanged infinitesimal charges to get closer together, causing the linear density of the 

entire line of charge to increase. We have 

𝜆′ =
d𝑞

d𝑥′
=

d𝑞

d𝑥/𝛾
= 𝛾

d𝑞

d𝑥
= 𝛾𝜆 

so the electric force acting on the particle is 

𝐅𝑒
′ =

𝛾𝑞𝜆

2𝜋𝜀0𝑑
𝐫̂ 

The magnetic force must then be 

𝐅𝑏
′ = 𝐅′ − 𝐅𝑒 =

𝑞𝜆

2𝜋𝜀0𝑑
(
1

𝛾
− 𝛾) 𝐫̂ = −

𝛾𝑞𝜆

2𝜋𝜀0𝑑

𝑣2

𝑐2
𝐫̂ 

Using the fact that 𝜀0𝜇0 = 1/𝑐2 and recognizing 𝜆′𝑣 = 𝛾𝜆𝑣 = 𝐼, the current carried by 

the line of charge with respect to the reference frame, we have 

𝐅𝑏
′ = −𝑞𝑣 (

𝜇0𝐼

2𝜋𝑑
) 𝐫̂ 

Indeed, this equation must hold true for all frames; this above equation should 

therefore describe the magnetic force acting on a point charge by a current-carrying 

wire. 

 

Part IV: Generalisations 

 In general, the magnetic force acting on a point charge 𝑞 is given by 

𝐅 = 𝑞𝐯 × 𝐁 

where 𝐁 is the magnetic field and 𝐯 the velocity vector of the charge. In the setup above, 

𝐁 at the point charge is a vector pointing into the paper of magnitude 𝜇0𝐼/2𝜋𝑑. 

Performing the cross product with the velocity vector of the charge gives a magnetic 

force pointing towards the wire. 

We might want to verify our claims above. If we are given full knowledge of the 

mechanics of electrodynamics, we can employ Ampere’s Circuital Law and consider 

going around a circular loop perpendicular to the direction of the current in a direction 



given by the right-hand rule. 

(𝐵)(2𝜋𝑑) = 𝜇0𝐼 

𝐵 =
𝜇0𝐼

2𝜋𝑑
 

with the vector pointing into the paper. As such, the magnetic force is given by 

𝐅 = 𝑞𝐯 × 𝐁 = 𝑞𝑣 (
𝜇0𝐼

2𝜋𝑑
)(−𝐫̂) 

matching our prediction above from special relativity. 

 Having discovered the equation for the magnetic force acting on a charged 

particle in the case of a current-carrying wire through special relativity, we have proven 

that the electric and magnetic forces are interrelated and just two sides of the same coin. 

Further developments of electromagnetism in special relativity incorporates both fields 

into a single object called the electromagnetic field tensor, usually denoted 𝐹𝜇𝜈 , which 

fits nicely into the language framework of four-vectors and Einstein notations. This is the 

first successful attempt at unification between two seemingly different forces, and 

physicists have made even more ambitious endeavours to unify others, for example, the 

electroweak force. 

 

Part V: Conclusion 

 We hope you have enjoyed this article. If you have any questions or noticed that 

we had made a mistake (we are after all just physics enthusiasts), feel free to email to 

primusmathematica1729@gmail.com. Check us out on Youtube, and stay tuned at Prime 

Pursuit for more articles and monthly problems! 
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