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PART I: Introduction 

 Entropy is a crucial concept in classical thermodynamics that measures the amount of 

‘disorder’ or ‘chaos’ in a system. It is usually introduced in conjunction with the second law of 

thermodynamics, which states that for an isolated thermodynamic system, the total entropy 𝑆, 

must increase. 

 In 1912, physicists derived an equation for the entropy of a monoatomic ideal gas, like 

helium, neon and argon, called the Sackur-Tetrode equation. However, usage of the non-

extensive version of this equation led to a paradox that supposedly violated the second law of 

thermodynamics. 

 

PART II: Derivation of the Sackur-Tetrode Equation 

 We first investigate the derivation of said equation. The definition of entropy, from 

Ludwig Boltzmann, is 

𝑆 = 𝑘 ln Ω 

where 𝑘 is the Boltzmann constant, and Ω the number of microstates corresponding to the 

system’s macrostate. 

 A macrostate of a system is specified by macroscopic quantities, e.g. volume, energy, etc., 

here, we specify the macrostate by the gas’s internal energy 𝑈. But for a gas with given energy, 

there are a lot of different arrangements the molecules of gas can take such that it yields the 

same energy: 

 

 

 

 

 

 

 

 

 

Fig. 1: Two different arrangements of a gas with the same resulting internal energy 𝑈 

 Figure 1 shows such an example. The same macrostate can correspond to an unthinkable 

amount of microstates, specified by the positions and momenta of each individual particle. 

Therefore, each state can be represented by a point in a 6𝑁-dimensional imaginary space called 

the state space, where the axes are labelled by the positions and momenta of each particle in all 

three dimensions: 𝑟1𝑥, 𝑟1𝑦, 𝑟1𝑧, 𝑝1𝑥, 𝑝1𝑦, 𝑝1𝑧… 𝑟𝑁𝑥, 𝑟𝑁𝑦, 𝑟𝑁𝑧, 𝑝𝑁𝑥, 𝑝𝑁𝑦, 𝑝𝑁𝑧. 

Internal energy: 𝑈 Internal energy: 𝑈 



 Now, since both position and momentum are continuous values, the total number of 

microstates would really be the integral rather than the sum of states over both position and 

momenta: 

Ω ~ ∫ d3𝑟1 d3𝑟2 ⋯ d3𝑟𝑁 d3𝑝1 d3𝑝2 ⋯ d3𝑝𝑁 

 But notice that the units don’t make sense – the left side has dimensionless units (it’s 

just a number), and the right side has units of m3𝑁 (N s)3𝑁 = (J s)3𝑁, namely the units of action 

to the 3𝑁 power. To account for this, we must divide by a constant with such a dimension. 

 In fact, this constant is the Planck’s constant, ℎ. This makes sense, since according to 

quantum mechanics, it is impossible to be infinitely precise in the measurement of position and 

momentum, given by the Heisenberg uncertainty principle; it is impossible to specify a region in 

phase space smaller than a ‘phase volume’ of ℎ3𝑁. 

 Hence, now we obtain the equation 

Ω =
1

ℎ3𝑁
∫ d3𝑟1 d3𝑟2 ⋯ d3𝑟𝑁 d3𝑝1 d3𝑝2 ⋯ d3𝑝𝑁 

Now, all the positional variables are limited by the coordinates of the container, which for 

simplicity we take to stretch from 0 to 𝐿. We can therefore evaluate the position integrals first: 

∫ d3𝑟1 d3𝑟2 ⋯ d3𝑟𝑁 = 𝐿3𝑁 = 𝑉𝑁 

where 𝑉 is the volume of the container. 

 For the momenta, we realize that the total internal energy of the system can be 

expressed in terms of the individual momenta of all the single particles: 

𝑈 =
𝑝1𝑥

2 + 𝑝1𝑦
2 + 𝑝1𝑧

2 + ⋯ + 𝑝𝑁𝑥
2 + 𝑝𝑁𝑦

2 + 𝑝𝑁𝑧
2

2𝑚
 

which upon rearranging, gives 

𝑝1𝑥
2 + 𝑝1𝑦

2 + 𝑝1𝑧
2 + ⋯ + 𝑝𝑁𝑥

2 + 𝑝𝑁𝑦
2 + 𝑝𝑁𝑧

2 = 2𝑚𝑈 

which is the equation of a 3𝑁-sphere with radius √2𝑚𝑈. The allowed points 

(𝑝1𝑥 , 𝑝1𝑦, 𝑝1𝑧, ⋯ 𝑝𝑁𝑥 , 𝑝𝑁𝑦, 𝑝𝑁𝑧) would be confined to the ‘surface volume’ of the 3𝑁-sphere. 

Taking the integral over the momenta would then correspond to finding the ‘surface volume’ of 

this sphere. Deriving the equation here would be off topic, so we’ll treat this as a given: it is 

equal to 

2𝜋3𝑁/2

(3𝑁/2 − 1)!
𝑟3𝑁−1 

 Substituting in 𝑟 = √2𝑚𝑈, we have 

∫ d3𝑝1 d3𝑝2 ⋯ d3𝑝𝑁 =
2𝜋3𝑁/2

(3𝑁/2 − 1)!
(√2𝑚𝑈)

3𝑁−1
 

Putting this all together, we have 

Ω =
2𝜋3𝑁/2𝑉𝑁

ℎ3𝑁(3𝑁/2 − 1)!
(√2𝑚𝑈)

3𝑁−1
 

Normally, 𝑁 is a large number. We can use this fact to approximate this expression and discard 

some of the unimportant numbers that wouldn’t affect the equation too much: 

Ω ≈
2𝜋3𝑁/2𝑉𝑁

ℎ3𝑁(3𝑁/2)!
(√2𝑚𝑈)

3𝑁
=

2𝑉𝑁

ℎ3𝑁(3𝑁/2)!
(√2𝜋𝑚𝑈)

3𝑁
 

∴ ln Ω ≈ ln
𝑉𝑁(√2𝜋𝑚𝑈)

3𝑁

ℎ3𝑁(3𝑁/2)!
= 𝑁 ln 𝑉 (

2𝜋𝑚𝑈

ℎ2
)

3/2

− ln(3𝑁/2)! 



 For the latter term of the last expression, we can use the Stirling’s approximation. Using 

this approximation we can write 

ln(3𝑁/2)! =
3𝑁

2
ln

3𝑁

2
−

3𝑁

2
 

So 

ln Ω ≈ 𝑁 [ln 𝑉 (
2𝜋𝑚𝑈

ℎ2
)

3/2

−
3

2
ln

3𝑁

2
+

3

2
] = 𝑁 [ln 𝑉 (

4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
3

2
] 

Thus the entropy (finally!) is 

𝑆 = 𝑘 ln Ω = 𝑁𝑘 [ln 𝑉 (
4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
3

2
] 

We have finally derived the Sackur-Tetrode equation, which calculates the entropy of a 

monoatomic ideal gas with internal energy 𝑈. 

 … But all is not well. 

 

PART III: The Gibb’s Paradox 

 Using this version of the Sackur-Tetrode equation leads to what is now known as the 

Gibb’s paradox. This is a thought experiment that supposedly violates the second law of 

thermodynamics, which states that the entropy of an isolated system must increase. 

 Imagine we have a container filled with a monoatomic gas (helium, neon, argon, 

whatever), and we insert a partition that cuts the volume into exactly two halves, each with 

volume 𝑉, internal energy 𝑈 and number of molecules 𝑁. 

 

 

 

 

 

 

 

Fig. 2: A container of monoatomic gas separated by a partition (dashed line) 

Each half would have entropy 𝑆, given by the Sackur-Tetrode equation, 

𝑆 = 𝑁𝑘 [ln 𝑉 (
4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
3

2
] 

Now, we remove the partition, the new entropy 𝑆′, would be 

𝑆′ = 2𝑁𝑘 [ln 2𝑉 (
4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
3

2
] 

The important thing to note here is that 𝑆′ > 2𝑆, because of the 2𝑉 factor inside the logarithm. 

Everything is well and dandy until we insert the partition back in, turning the total entropy 𝑆′ 

back to 2𝑆, a decrease in entropy in violation of the second law. 

To resolve this paradox, we must first carefully consider what exactly went wrong. 

Suppose we colour the molecules in each half to be red and green: 



 

 

 

 

 

 

 

Fig. 3: Container separated into halves with a partition, with gas coloured on each side 

If we remove the partition, the gases end up mixing, and if we place the divider again, the 

situation will most likely be in some sort of random arrangement like below:  

 

 

 

 

 

 

 

Fig. 4: Mixed gases re-divided by the partition 

It is easy to see that in fact, the entropy has not decreased. The gases remain mixed even 

after we have placed the divider. This problem arises because we made an implicit assumption 

that all gas molecules are distinguishable, i.e. you can tell a molecule apart from the others. So 

when we removed the partition, we would have thought that the gases have ‘mixed’ when they 

are in fact still the same gas, so the entropy increased. 

To account for this inconsistency, we’d have to step back and rederive it once more. If we 

now assume that all atoms are indistinguishable, we would have overcounted Ω by a factor of 𝑁! 

(to verify this, simply pick a microstate and swap the molecules; you would have 𝑁! 

arrangements). Hence, 

Ω =
2𝑉𝑁

ℎ3𝑁𝑁! (3𝑁/2)!
(√2𝜋𝑚𝑈)

3𝑁
 

Taking the natural logarithm, 

∴ ln Ω = 𝑁 ln 𝑉 (
2𝜋𝑚𝑈

ℎ2
)

3/2

− ln 𝑁! − ln(3𝑁/2)! 

≈ 𝑁 [ln 𝑉 (
2𝜋𝑚𝑈

ℎ2
)

3/2

− ln 𝑁 −
3

2
ln

3𝑁

2
+

5

2
] 

= 𝑁 [ln
𝑉

𝑁
(

4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
5

2
] 



Therefore, the entropy is 

𝑆 = 𝑘 ln Ω = 𝑁𝑘 [ln
𝑉

𝑁
(

4𝜋𝑚𝑈

3𝑁ℎ2
)

3/2

+
5

2
] 

This is the real Sackur-Tetrode equation. 

 

PART IV: Conclusion 

 Throughout this article, we have tried to calculate the entropy of a monoatomic ideal gas, 

given its internal energy, volume and number of molecules. By invoking quantum mechanics, a 

6𝑁-dimensional phase space and Stirling’s approximation, we have arrived at a version of the 

equation that was still not quite correct; but after assuming that all atoms are indistinguishable, 

we have resolved an arisen paradox. 

 We hope you have enjoyed this article. If you have any questions or noticed that we had 

made a mistake (we are after all just physics enthusiasts), feel free to email to 

primusmathematica1729@gmail.com. Check us out on Youtube, and stay tuned at Prime Pursuit 

for more articles and monthly problems! 
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