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Recently the NZ Squad Selection Test was held over a three-day period in mid-January, 2024. While I
enjoyed most of the problems, I’d like to discuss four which I found quite interesting. Hopefully you could
learn a thing or two, and at the same time, enjoy the process of problem solving throughout.
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1 Problems

1.1 NZSST3 2024 P7: Trial and Error

Given that 0 ≤ a, b, c ≤ 1, what is the maximum possible value of the following expression?

a

bc+ 1
+

b

ac+ 1
+

c

ab+ 1

Solution Outline: Traditionally one would guess the maximum is achieved when a = b = c = 1, where the

expression would be equal to
3

2
. However, upon further inspection one would notice a, b, c = 1, 1, 0 yields a

maximum value of 2. Intuitively this somewhat makes sense, as one could try to maximise
a

bc+ 1
or

a

bc+ 1
by minimising the denominator. You could play around with the other values of (a, b, c), but for now, let’s
conjecture

a

bc+ 1
+

b

ac+ 1
+

c

ab+ 1
≤ 2.

Since inequality does not hold at a = b = c, it would be more sensible to deal with the problem by each
parts. First, we will try to prove

a

bc+ 1
≤ 2a

a+ b+ c
.

This is equivalent to a + b + c ≤ 2bc + 2, (a ̸= 0). Now, we will make use of the fact that 0 ≤ a, b, c ≤ 1,
rewriting the inequality as

(1− b)(1− c) + bc+ (1− a) ≥ 0

which is true since 1− a, 1− b, 1− c and bc are all nonnegative. By symmetry, we have

b

ac+ 1
≤ 2b

a+ b+ c
c

ab+ 1
≤ 2c

a+ b+ c
,

which implies

a

bc+ 1
+

b

ac+ 1
+

c

ab+ 1
≤ 2(a+ b+ c)

a+ b+ c
= 2.

Equality is achieved when (a, b, c) = (1, 1, 0). Q.E.D.

Comments: Now why is 2 the maximum? Suppose the maximum is 2 + 3n for some positive n. Let’s follow
the orignal method, striving to prove

a

bc+ 1
≤ 2a

a+ b+ c
+ n

⇔ a+ b+ c ≤ 2bc+ 2 +
n

a
(a+ b+ c)(bc+ 1)

⇔ 0 ≤ (1− b)(1− c) + bc+ (1− a) +
n

a
(a+ b+ c)(bc+ 1).
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But
n

a
(a + b + c)(bc + 1) ≥ n

a
· a = n > 0 by assumption, hence equality could never be attained. This

establishes 2 as the maximum, which is our final answer.

1.2 NZSST3 2024 P8: The Hammer and the Fly

Find all triples (a, b, c) of positive integers such that both
b+ 1

a
and

a2 + 1

bc+ 1
are integers.

Solution Outline: Some people would notice the similarity of this problem with the legendary 1988 IMO P6:

(IMO 1988 P6) Let a and b be positive integers such that ab+ 1 divides a2 + b2. Show that

a2 + b2

ab+ 1

is the square of an integer.

Here the more advanced technique of Vieta Jumping was used. However, my philosophy of problem solving
is to first try simple methods and intuitive ideas, as opposed to ”killing a fly with a hammer” by using
advanced theorems. Moreover, the abundance of variables and the non-symmetrical nature of the expression
does not make it easy for us to use Vieta Jumping. With that in mind, let b = ak − 1 for some positive
integer k, then

bc+ 1 = (ak − 1)c+ 1

= ack − c+ 1.

Let M be an integer such that M =
a2 + 1

bc+ 1
, then

(bc+ 1)M = a2 + 1

(ack − c+ 1)M = a2 + 1.

I hope up to this point everything is intuitive. Now, the key observation:

a(ckM − a) = cM −M + 1.

First, we introduce a lemma.

Lemma: For positive integers x,y and n, if xy = n, then x+ y ≤ n+ 1.

Proof: There are two cases to consider.

Case 1: {x, y} = {n, 1}, then x+ y = n+ 1.
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Case 2: x, y ̸= n, then x, y ≤ n

2
, hence x+ y ≤ n

2
+

n

2
= n < n+ 1.

Using this lemma with (x, y, n) = (a, ckM − a, cM −M + 1) gives us

ckM ≤ cM −M + 2.

With the above inequality in mind, now we shall resort to case ”bashing”.

If k = 1, then M = 1 or 2. The former gives the solution (a, b, c) = (2, 1, 4), while the latter gives the family
of solutions

{(2m− 1, 2m− 2,m) |m ∈ Z+, m ≥ 2}.

If k = 2, then

M(c+ 1) ≤ 2

⇒M = c = 1

which gives the solution (1, 1, 1). (The details are left as an exercise for the reader.)

If k ≥ 3, then ckM ≥ 3cM . However, this implies

cM −M + 2 ≥ 3cM

2 ≥ M(2c+ 1)

which yields no solutions as M(2c+ 1) ≥ 3.

Hence the only answers are {(2m − 1, 2m − 2,m) |m ∈ Z+, m ≥ 2}, (2, 1, 4), and (1, 1, 1). These can be
easily verified.

Comments: As you can see, the use of Vieta Jumping is not really necessary, as shown above. ”Keeping it
simple, and don’t overthink”, as my friend Alex Chui said before, is always a good motto to remember when
dealing with problems.

1.3 NZSST2 2024 P6: A Bit of Everything

Given are two triangles A and B, both having area a and perimeter p. Prove that there exists a
triangle C such that C is congurent to B, and such that the intersection of the interiors of A and C
is a polygon with area greater than

13a2

p2
.
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Solution Outline: At first glance the problem might seem ”undoable”; 13 seems like an arbitary number,
and the area of the intersecting area doesn’t seem easy to handle. Nevertheless, let’s try manipulating the

seemingly out of place expression, using the fact that
pr

2
= a (where r is the inradius.)

13a2

p2
=

13r2

4

Now notice that equal area and perimeter implies the two triangles have equal inradius (a fact that motivates
this solution.) This hints we should construct the diagram as show below, overlapping the incircles of A and
C with center I.

Figure 1: Note that in both diagrams the intersection of A and C forms a hexagon.

Here we constructed so that the intersecting area is a hexagon. If one of the vertices of the hexagon coincides
with a vertex of A or C (forming a polygon with less than six sides), we could simply rotate C about I, since
there are infinitely many rotations one could do, but only a finite number of rotations such that a hexagon
isn’t formed. It is clear that

6∑
i=1

2θi = 2π (laws of tangents)

6∑
i=1

θi = π.

Hence we could express the intersecting are of A and C, which we call S, as

S = 2

6∑
i=1

1

2
r · r tan θi

=

6∑
i=1

r2 tan θi

= r2
6∑

i=1

tan θi.

Now note that θi ∈ (0,
π

2
) for i ∈ {1, 2, 3, 4, 5, 6}, where the function f(x) = tanx is convex. This means we

5



Figure 2: One can compute S by subdiving the hexagon into right-angled triangles.

can apply Jensen’s inequality, giving us

S = r2
6∑

i=1

tan θi

≥ 6r2 tan

(
1

6

6∑
i=1

θi

)
= 6r2 tan

(π
6

)
= 6r2 ·

√
3

3

= 2
√
3r2.

Clearly 2
√
3 >

13

4
, which completes our proof.

Comments: The results shown generalises to all pairs of triangles with equal inradii.

1.4 NZSST3 2024 P6: Always a Sweet Treat

Triangle ABC has incenter I and satisfies AB < AC. Let M be the midpoint of BC, and let D be
the point where the incircle of triangle ABC is tangent to side BC. The circle with center M and
radius MD intersects line AI at P and Q. Prove that ∠BAC + ∠PMQ = 180◦.

This is by far the most interesting geometry problem out of all three selection tests.
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(NZSST1 2024 P3) Let ABC be a triangle with AB = 360, BC = 240 and AC = 180. The internal
and external bisectors of angle ∠CAB meet line BC at points P and Q respectively. Find the radius of the
circumcircle of △APQ.

(NZSST2 2024 P2) Let ABC be an acute triangle and let D be the midpoints of side BC. Suppose that
∠BAD = ∠ACD and ∠DAC = 15◦. Determine ∠ACB.

(NZSST3 2024 P4) Let P be a point inside square ABCD. Prove that the perpendiculars from A, B, C
and D to lines BP , CP , DP and AP respectively are concurrent.

Solution Outline: It is quite logical to convert the statement into something simpler, hence we shall start
with that.

Figure 3: Observing two possible cyclic quadrilaterals and collinearities.

∠BAC + ∠PMQ = 180◦

⇔ ∠BAC + 360◦ − 2∠PDQ = 180◦ (angles in a circle)

⇔ ∠BAC + 180◦ = 2∠PDQ

⇔ 2(
1

2
∠BAC + 90◦) = 2∠PDQ

⇔ ∠BIC = ∠PDQ.

This simple condition allows the acute eye (and a good diagram) to make a key conjecture: △BIC ∼ △PDQ.
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This again is equivalent to

△BIC ∼ △PDQ

⇔
{

∠DPQ = ∠IBC
∠DQP = ∠BCI

(corr. angles in sim. triangle)

⇔
{

B,D,P, I concyclic
I,D,Q,C concyclic

(substanded angles eq.)

⇔ ∠BPA = ∠BQC = 90◦.

Proving this would essentially end the solution. However, directly attempting this does not seem simple, as
the conditions on hand are somewhat ”limited.”

Hence we shall proceed with reverse reconstruction. Let P ′, Q′ be the foot B, C to AI respectively. Let E,
F be the midpoints of AC, AB respectively. We shall prove that P ′ coincides with P and Q′ coincides with Q.

Figure 4: Reverse reconstruction to utilize these conditions to its fullest extent.

Directly one could infer

AE = EQ′ (from Thale’s Theorem)

⇔ ∠Q′AE = ∠EQ′A = ∠Q′AB

⇔ Q′E ∥ AB.

Since M , E are midpoints, this implies ME ∥ AB. Hence Q′, M , E collinear.

Similarly, P ′, M , F are collinear (details left as an exercise for the reader.) Hence ∠P ′MD = ∠ACB,
∠DMQ′ = ∠ABC.
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Also directly one could infer {
B,D,P ′, I concyclic
I,D,Q′, C concyclic

as discussed. Therefore

∠DP ′M = ∠DP ′Q′ + ∠Q′PM

= ∠IBC + ∠IAC (angles in cyclic quad. and parallel lines)

=
1

2
(∠ABC + ∠BAC)

=
1

2
(180◦ − ∠ACB).

This implies

∠P ′DM = 180◦ − ∠ACB − 1

2
(180◦ − ∠ACB) (sum of angles of a triangle)

=
1

2
(180◦ − ∠ACB)

= ∠DP ′M.

which means DP ′ = P ′M , thus P ′ = P . One could analogously prove Q′ = Q, and again, the details are
left for the reader to complete.

2 Afterword

I hope you have enjoyed this article. If you have any questions or I have made any mistakes (I am after
all just a maths enthusiast), feel free to email to primusmathematica1729@gmail.com. Check us out on
Youtube, and stay tuned at Prime Pursuit for more articles and monthly problems!
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