## Monthly Problems 2 February 2024



Contact Us: primusmathematica1729@gmail.com Website: Prime Pursuit Youtube: Primus Mathematica

## Problems

- 1. For which positive integers  $n \ge 3$  does there exist a permutation  $(a_1, a_2, ..., a_n)$  of (1, 2, ..., n) such that  $|a_i a_{i-1}|$  and  $|a_{i+1} a_i|$  differ in parity for all i = 2, 3, ..., n, where  $a_{n+1} = a_1$ ? (Alston Yam)
- 2. Let A be a point lying strictly inside the circle  $\omega$ . Find the locus of all points M such that M is the midpoint of a chord XY of  $\omega$  and  $\angle XAY = 90^{\circ}$ . (Culver Kwan)
- 3. Suppose a is a quadratic residue for all but finitely many primes. Prove that a is a perfect square. (Culver Kwan)

(For any positive integer p, an integer a is a quadratic residue (mod p) if there exists an integer b such that  $p \mid a - b^2$ .)

4. Let  $n \ge 3$  be a positive integer, and set  $N = \frac{n(n-1)}{2}$ . Find the largest possible positive integer m, such that for any (possibly empty) subsets  $A_1, A_2, ..., A_n$  of the set  $\{1, 2, ..., N\}$ , whenever  $|A_i \setminus A_j| \le m$  for all positive integers i, j with  $1 \le i, j \le n$ , the coefficient of the term  $\prod_{i=1}^N x_i$  in

$$\prod_{1 \le i < j \le n} \left( \sum_{k \in A_i} x_k - \sum_{k \in A_j} x_k \right)$$

is equal to zero. (Culver Kwan)