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In this article we present the solutions to the first February Problem Sheet.
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1 Problems

1.1 Problem 1

Find all triplets of positive integers (a, b, c) such that

ln (ab+ bc+ ac)

ln (lcm(a, b, c))

is an integer. (Culver Kwan)

Solution. We claim that the only triples (a, b, c) that satisfy the given requirement are:

(a, b, c) = (3, 3, 3),

(a, b, c) = {1, 2, 2},

(a, b, c) = {2d, 3d, 6d}, where d is any positive integer.

Note that for example, (a, b, c) = {1, 2, 2} represents all permutations of the set {1, 2, 2}.

It is not hard to show that they all satisfy the given condition.

We now prove that these are the only solutions. Let

ln (ab+ bc+ ac)

ln (lcm(a, b, c))
= k,

Where k is a positive integer.

Let
l = lcm(a, b, c),

Note that
⇐⇒ ln (ab+ bc+ ac) = k ln(l)

⇐⇒ eln(ab+bc+ac) = ek ln(l) = (eln(l))k

⇐⇒ ab+ bc+ ac = lk.

Lemma:
k ≤ 3.
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Proof: WLOG let a ≥ b ≥ c.
ak|lk = ab+ bc+ ac

=⇒ ak ≤ ab+ bc+ ac ≤ 3ab

=⇒ ak−1 ≤ 3b ≤ 3a

=⇒ ak−2 ≤ 3 (♠)

FTSOC let k ≥ 4:
a2 ≤ ak−2 ≤ 3

=⇒ a ≤
√
3

=⇒ a = b = c = 1

Substituting back, we get a contradiction; hence the lemma is proven.

We now do case work on k:

Case 1: k = 1
l = ab+ bc+ ac

WLOG a ≥ b ≥ c,

Since a|l, a|LHS =⇒ a|RHS.

a|ab+ bc+ ac =⇒ a|bc.

Since
a, b, c|bc

Therefore
l|bc

=⇒ l ≤ bc

But l = ab+ bc+ ac ≥ 3bc,
l ≥ 3bc

Contradiction!
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Case 2: k = 2
l2 = ab+ bc+ ac

Define d = gcd(a, b, c), d ≥ 1.

Let
a = dA, b = dB, c = dC

where there exists two letters, WLOG A,B, such that gcd(A,B) = 1.

Note that
lcm(a, b, c) = d lcm(A,B,C).

d2 lcm(A,B,C)2 = d2AB + d2BC + d2AC

lcm(A,B,C)2 = AB +BC +AC

and since A| lcm(A,B,C), so A|AB +BC +AC, so A|BC. Similarly, B|AC and C|AB.

∵ gcd(A,B) = 1, ∴ A|C and B|C, =⇒ AB|C. and since C|AB,

AB ≤ C ≤ AB

∴ C = AB.

so
lcm(A,B,C) = AB

A2B2 = AB +A2B +B2A

AB = 1 +A+B

=⇒ A|(B + 1), B|(A+ 1)

If A = B+1, =⇒ (A−1)|(A+1) =⇒ A = 2 or 3. Substitute back and we get B = 1 or 2. The case where
B = 1 gives (A,B,C) = {2, 1, 2}, however, substituting back we get that k = 3 so we discard this solution
here. When B = 2 we get (A,B,C) = {3, 2, 6} which indeed works. So

(a, b, c) = {3d, 2d, 6d}

For some integer d is a solution to the original equation.

Now, if A ̸= B + 1, we get A ≤ B + 1

2
, and since B ≤ A+ 1 we get B ≤ B + 1

2
+ 1, =⇒ B ≤ 3. Case work

gives solutions which we’ve already covered before. Hence

(a, b, c) = {3d, 2d, 6d}

are the only solutions in this case.
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Case 3: k = 3

From (♠),

a3−2 = a ≤ 3

and case work on a, b, c gives solutions
(a, b, c) = {1, 2, 2}

(a, b, c) = (3, 3, 3)

Altogether, we get that
(a, b, c) = (3, 3, 3)

(a, b, c) = {2, 2, 1}

(a, b, c) = {3d, 2d, 6d}

are the only solutions.
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1.2 Problem 2

x, y, z, t are positive reals summing to 4. Prove that

x

1 + y2
+

y

1 + z2
+

z

1 + t2
+

t

1 + x2
≥ 2

(Culver Kwan)

Solution. We first start with a claim:

Lemma:

2 ≥ xy2

1 + y2
+

yz2

1 + z2
+

zt2

1 + t2
+

tx2

1 + x2

Proof: We proceed by AM-GM inequality.

AM-GM on x and
xy4

(1 + y2)2
gives

x+ xy4

(1+y2)2

2
≥

√
x2y4

(1 + y2)2
=

xy2

1 + y2

x

2
+

xy4

2(1 + y2)2
≥ xy2

1 + y2

Summing cyclically over all four inequalities:

x

2
+

xy4

2(1 + y2)2
+

y

2
+

yz4

2(1 + z2)2
+

z

2
+

zt4

2(1 + t2)2
+

t

2
+

tx4

2(1 + x2)2
≥ xy2

1 + y2
+

yz2

1 + z2
+

zt2

1 + t2
+

tx2

1 + x2

Substitute x+ y + z + t = 4:

2 +
xy4

2(1 + y2)2
+

yz4

2(1 + z2)2
+

zt4

2(1 + t2)2
+

tx4

2(1 + x2)2
≥ xy2

1 + y2
+

yz2

1 + z2
+

zt2

1 + t2
+

tx2

1 + x2

and since
xy4

2(1 + y2)2
+

yz4

2(1 + z2)2
+

zt4

2(1 + t2)2
+

tx4

2(1 + x2)2
≥ 0,

the lemma is proven.
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Now from the lemma,

4 ≥ xy2

1 + y2
+

yz2

1 + z2
+

zt2

1 + t2
+

tx2

1 + x2
+ 2

x− xy2

1 + y2
+ y − yz2

1 + z2
+ z − zt2

1 + t2
+ t− tx2

1 + x2
≥ 2

x

1 + y2
+

y

1 + z2
+

z

1 + t2
+

t

1 + x2
≥ 2

As desired.
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1.3 Problem 3

Let P be a point on the circumcircle of triangle ABC with circumcenter O. Let G1, G2, G3 be the
centroid of triangles PBC, PAC, PAB respectively. LetK be the first intersection of the circumcircle
of triangle G1G2G3 and the median of BC with respect to A. Let H ′, O′ be the orthocenter and the
circumcenter of G1G2G3 respectively. Prove that O′H ′ = KO. (George Zhu)

Solution. We first prove that K is the centroid of triangle ABC by reverse reconstruction.

Let K ′ be the centroid of triangle ABC. By definition, K ′ lies on the A-median of triangle ABC. It remains
to show that K ′G1G2G3 lies on the same circle.

Consider the midpoint M of side BP . By definition, MG2A and MG3C are collinear. Note that due to the
ratio that the centroid splits the median into is 1 : 2, we get that

MG2

G2A
=

MG3

G3C
=

1

2
.

In other words, G2G3 ∥ AC.

Similarly, G3G1 ∥ BA, G1K
′ ∥ BP , and G2K

′ ∥ CP .

Thus there exists a homothety h that maps K ′G1G3G2 to ACPB. And since ACPB cyclic, we get that
K ′G1G3G2 must also be cyclic. Hence K ′ = K, and we have proven that K is indeed the centroid of triangle
ABC.

We now prove that the homothety h mentioned earlier has a scale factor of −3. This is apparent considering

AC

G1G2
=

MA

MG2
= 3.

So the homothety that takes AC to G1G2 must have a scale factor of −3 (the negative sign is due to the
fact that G2G3 and AC lie on opposite sides of the homothety center).

Denote the orthocenter of triangle ABC byH. Homothety h takesO′ toO, andH ′ toH, whereOH = 3O′H ′.

Note that since K is the centroid of triangle ABC, we get that H,K,O are collinear on the Euler line of
triangle ABC. Furthermore, by the ratio on the Euler lines, we have

3KO = OH.

Combine that with our previous result, we get that

3O′H ′ = 3KO,

O′H ′ = KO

As desired.
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1.4 Problem 4

Let n be a positive integer. Culver and George are playing a game using n piles of stones, initially
with 1, 2, ..., n stones in each of the piles respectively. Culver and George take turns to play, with
Culver starting first. In a turn, a player chooses a pile with a positive number of stones remaining
and discards 4k stones from the pile where k is a non-negative integer and 4k does not exceed the
number of stones in the pile before the move. Whoever discards the last stone wins. If both of the
players play optimally, for which n will George win? (Culver Kwan)

Solution.

Claim:

For
n ≡ 0, 3, 9 (mod10),

George wins the game.

We first explore a simplified version of the problem: consider the game where there is only one pile of n
coins, and Culver and George take turns to remove 4k coins from the pile.

Let’s call this game (4k)−nim. As we will see, the original game is simply composed of n piles of (4k)−nim.

Since we want the second player (George) to win, we would want to determine which starting positions are
losing positions.

Calculating the Grundy numbers for the first few positions of (4k)− nim, we get:

Amount of stones in the pile: 0 1 2 3 4 5 6 7 8 9 10 . . .
Grundy number of this position: 0 1 0 1 2 0 1 0 1 2 0 . . .

So it seems that when the amount of stones in the pile is congruent to 0 (mod 5) or 2 (mod 5), the Grundy
number of the position is 0, which means that the position is a losing one. Hence if the pile started with
this many stones, George would be the winner.

We now have the following lemma:

Lemma 1: The sequence 0, 1, 0, 1, 2 is periodic in the Grundy numbers of the positions of (4k)− nim.

Proof: We go by induction. Let g(n) denote the Grundy number for when there are n stones left in a
game of (4k)− nim. We claim :

g(n) =


0 for n ≡ 0, 2(mod5)

1 for n ≡ 1, 3(mod5)

2 for n ≡ 4(mod5)

Base Case: Consider the table above.

Now assume that for all n ≤ 5m− 1 for some m, the claim holds.
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We now consider {5m, 5m+ 1, 5m+ 2, 5m+ 3, 5m+ 4}.

By taking off 4k stones from the pile, we are changing the value of n under mod 5 by +1 or −1, as

4k ≡ ±1(mod 5).

Hence the Grundy numbers for the following are:



g(5m) = mex{1, 2} = 0

g(5m+ 1) = mex{0, 0} = 1

g(5m+ 2) = mex{1, 1} = 0

g(5m+ 3) = mex{0, 2} = 1

g(5m+ 4) = mex{0, 1} = 2

And so our lemma is proven.

Returning to our original problem, letG denote the game. We see thatG is consisted of n games of (4k)−nim,
each having a Grundy number. We denote the nim-sum to be the xor of all the Grundy numbers in each of
the individual piles. For example: n = 3, we have piles of sizes

(1, 2, 3)

So we have Grundy numbers
(1, 0, 1).

Taking the xor, we get that the nim-sum is 002, where 002 is in base 2.

Note that since the Grundy numbers in this game have values 0, 1, 2, the possible values of nim-sum in this
case are 002, 012, 102, 112.

Lemma 2: Let P be a position in G. if the nim-sum of P is equal to 002, P is a losing position. Otherwise,
P is a winning position.

Proof: We split the proof into three parts:

We first see that the final (L) position,
(0, 0, . . . 0)

Has a nim-sum of 002.

We now show two things;

• From a position where the nim-sum is 002, all moves will lead to a position where the nim-sum ̸= 002.

• It is always possible to change the nim-sum from a number that is ̸= 002 to 002.

Firstly: Assume we have a position P where the nim-sum is 002. Therefore when all the Grundy numbers
of the individual piles are arranged in a table, each column has an even amount of 1s. When a move is done
on any pile, the Grundy number of that pile is changed, and hence the parity of the total amount of 1s on
some columns are changed, thus making the nim-sum not zero.
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Secondly: Assume that the nim-sum of the current position ̸= 002. Note that the nim−sum in this case
can only be 012, 102, 112 as we have assumed it to not equal to 002. Note that the Grundy numbers 0, 1, 2
have binary representation of 002, 012, 102 respectively.

Case 1: nim-sum = 012:

Hence there is an odd amount of 1s in the right most column. Thus there must exist a single pile where its
Grundy number is 1. Changing the Grundy number of that pile to 0 by removing some stones from it (it is
always possible as by the definition of the Grundy numbers), we have flipped the parity of the amount of 1s
in the right-most column, so we have changed the nim-sum to 002

Case 2: nim-sum = 102:

Hence there must exist a singular pile whose Grundy number is 2. By similar argument to case 1, we can
change the nim-sum of this position to 002.

Case 3: nim-sum = 112:

Therefore there must exist two piles, one with a Grundy value of 1 and another with a Grundy value of 2.
Now, we switch the pile with Grundy value 2 to the pile with Grundy value 1 (This is always possible by
simply removing 1 stone from such a pile). And as a result, we have affected the parity for both columns
and thus the nim-sum is now 002.

Finally, when the starting position of G has a nim-sum of 002, The position is a losing position for Culver,
and hence George will win.

Writing out the Grundy values for 1, 2, 3, . . . , We get that for n ≡ 0, 3, 9(mod 10), the nim − sum of piles
(1, 2, 3, . . . n) are 002. Thus for these values of n, the starting position is a losing one for Culver, so George
should be able to force a win.
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2 Afterword

I hope you have enjoyed this article. If you have any questions or I have made any mistakes (I am after
all just a maths enthusiast), feel free to email to primusmathematica1729@gmail.com. Check us out on
Youtube, and stay tuned at Prime Pursuit for more articles and monthly problems!
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